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ABSTRACT 
In this paper, a description of a general purpose neural network 
chip with on-chip learning is given. The design is implemented 
using Xilinx Vertex II XCV 1000 Field Programmable Gate 
Array (FPGA). An XOR gate simulation was used as a testing 
application. Results and comparison of both software and 
hardware implementations are listed. A second testing application 
in noise cancellation and voice recognition is currently under 
development. 
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1. INTRODUCTION 
Neural networks can be implemented in software and hardware. 
Since implementations on a conventional host computer are easier 
and cheaper comparing to hardware, learning algorithms are 
usually implemented in software for low-level applications. The 
performance of a conventional processor, e.g. the Intel Pentium 
series, continues to improve dramatically but they are still far 
away from the required performance. Even the fastest sequential 
processor can not provide real-time response for neural networks 
with large number of neurons and synapses. Therefore speed 
becomes the primary reason of using hardware implementations 
for neural network.  In this paper, we provided the result from 
both software and hardware implementation.  

2. OVERVIEW OF NEURAL HARDWARE 
Implementation of Neural Networks can be more practical and 
attractive when high-speed and cost-effective neural hardware is 
available. There are some attributes to categorize these hardware 
devices, depending on their purposes, architectures, and learning 
types. The graph of taxonomy is shown in Figure 1.  

 

 

 

 

 

 

General purpose designed neurochips can be developed by either 
single processor or multiple processor systems, and require a huge 
number of computations and communications resources to 
perform a neural function. Most general purpose neurochips are 
digital so that the processors would be able to execute larger 
neural networks in a parallel environment. The advantages of 
using general designed neuro-computers are ease to implement, 
wide availability, and lower cost. 

Dedicated purpose neural hardware design usually has a higher 
performance because the direct mapping from hardware structure 
to silicon is available. However, a direct mapping in the 
interconnection also implies massive communication cost. 
Therefore the dedicated design usually depends on the application 
requirements and usually a custom-design. The drawback of this 
design is the lack of flexibility.  

Neural Network hardware also can be classified by its learning 
type: on-chip, off-chip, and chip-in-the-loop learning. On-chip 
learning provides the highest speed and precision. The training 
algorithm and the weight updates are completely done on chip. 
Off-chip learning is performed by a host computer. The weight 
updates from the training process are quantized and then 
downloaded on the chip. Obviously, off-chip learning can reduce 
the silicon space, but it is much slower than on-chip learning. 
Chip-in-the-loop learning uses the hardware for only forward 
propagation. The calculations of the new weights are done by a 
host computer, which means the updated weights will be 
downloaded to the chip after a training cycle. In this paper we 
describe an on-chip learning general purpose neural network chip 
using Xilinx FPGA, which means we downloaded the program 
into FPGA and performs without any other devices. 

3. LEARNING AND TRAINING 
This section introduces the concept of training a network to 
perform a given task. In order for a TLU to perform a given 
classification, it must have the desired decision surface. Since this 
is done by the weight vector and threshold, it is necessary to 
adjust these to bring about the required functionality. In general 
terms, adjusting the weights and thresholds in a network is usually 
done via an iterative process of repeated presentation of examples 
of the required task. At each presentation, small changes are made 
to weights and thresholds to make them more close to their 
desired values. This process is known as training the net. From 
the network’s viewpoint, it undergoes a process of learning, and 
the prescription for how to change the weights at each step is the 
learning rule (or the learning algorithm). 

Figure 1. Taxonomy of neural hardware  



There are two types of neural network (classified by structure), 
one is feed-forward network and the other is feed-back network. 
Both of these two networks can be expressed as a supervised 
learning. 

3.1 DELTA Rule 
The unit perceptron is constructed by single layer network, collect 
the input data to form an activation function, and classified the 
output using threshold. To make the perceptron learning, we use 
the “DELTA rule” to train nodes. The formula is given: 

iii WtWtW ∆+=+ )()1(    (1) 
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Here, is the synaptic weight from input neuron to output 

neuron,  is the target output,  is the actual output, and 

iW

it ia α  is 
a positive factor of proportionality called learning rate. The rule 
tells us that we get the new value of a weight by adding a certain, 
weight-specific “delta”. In other words, the change of a weight 
feeding into an output unit is the bigger the more the actual output 
deviates from the target output. If the difference between actual 
and target output is zero, no changes need to be made to this 
weight. This rule works well for single-layer networks (i.e. 
perceptron), but can not be applied to general feed-forward nets, 
since there is no information concerning “targets” for hidden units, 
so the delta rule does not tell us how to change the weights 
feeding into these units. On the other hands, we can not limit 
ourselves to networks without hidden units, since it has been 
proved that they are necessary for some tasks, and that is why we 
need feed-back network which represented by back-propagation 
algorithm to change the weights in hidden layer. 

3.2 Back-Propagation Algorithm 
Back-propagation algorithm is the most important and popular 
learning algorithm [5]. The algorithm works with a generalization 
of the delta algorithm to multi-layer feed-forward networks, that 
means in particular to networks with hidden units. The algorithm 
is called back-propagation, and it is based in the mathematical 
method of gradient descent. Rumelhart begins his original paper 
by presenting a derivation of the delta rule that shows the delta 
rule also implements gradient descent. The idea is to define an 
error function: 
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Where i  varies over all output units and all input/output patterns. 
This function is assumed to be a function of the weights, and the 
ultimate goal is to minimize this function (i.e. minimize the error) 
by adjusting the weights. There is no formula for the error 
function, the only known pieces of information are the current 
point in weight space and the current output, or its deviation from 
the desired output, respectively. The optimal vector is then found 
by minimizing this function by gradient descent as shown 
schematically in figure 2.  

 
 Figure 2. Gradient Descent for a Network 
 

In this case there is an extra term in the delta rule that is the 
derivative of the sigmoid daad /)(σ . It is convenient 
occasionally to denote derivatives by a dash or prime symbol so 
putting )('/)( adaad σσ = , we obtain: 

iiii XataW *)(*)(' −=∆ ασ    (5) 

Where )(aσ  is the activation function and )(' aσ  is the slope 
of the sigmoid function. They are showed in figure 3. 

 
Figure 3. The sigmoid function and its slope  

 

It is now possible to write the hidden node learning rule for the 
th hidden unit as: k
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Therefore, for any node k (hidden or output) we may write: 
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For the output nodes: 
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For the hidden nodes: 
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In line with convention, this is the usage that will be adopted 
subsequently. It remains to develop a training algorithm around 
the rules we have developed. In [2], it will be clearer to expand 
the main step of back-propagation algorithm in following steps 

1. Present the pattern at the input layer 

2. Let the hidden units evaluate their output using the pattern. 



3. Let the output units evaluate their output using the result in 
step 2 from the hidden units. 

4. Apply the target pattern to the output layer. 

5. Calculate the δ’s on the output nodes. 

6. Train each output node using gradient descent (7) 

7. For each hidden node, calculate itsδaccording to (9) 

8. For each hidden node, calculate itsδaccording to (6) 

The steps 1-3 are collectively known as the forward pass since 
information is following forward through the network in the 
natural sense of the nodes’ input-output relation. Steps 4-8 are 
collectively known as the backward pass. Step 7 involves 
propagating the δs back from the output nodes to the hidden 
units-hence the name back-propagation. The networks that get 
trained like this are sometimes known as multilayer perceptron or 
MLP. A simulation from Matlab is shown in Figure 4. 

 
 

4. RESULT FROM SOFTWARE 
C language is one of the most popular environments for designers. 
In our project, we used Visual C++ to simulate the XOR gate 
using back-propagation algorithm. The training process basically 
checks the result for every possible model (“00”, “01”, “10”, and 
“11”).  The updated weights must be satisfied by all of these sets. 
If a set of weights are qualified for part of sets such as “00” and 
“01”, but fails to qualify the “10”, the process requires resetting 
the counter and running through from “00” again until all the 
weights are satisfied by these sets. The procedure takes a long 
time to simulate while the error is limited to 5%.  

5. Field Programmable Gate Array 
A Field Programmable Gate Array (FPGA) is a completely 
reconfigurable logic chip. This logic chip consists of millions of 
configurable logic block (CLB) which can be linked together to 
form complex digital logic implementations. The individual units 
are interconnected by a matrix of wires and programmable 
switches. A user’s design is implemented specifying the simple 
logic function for each logic block and selectively closing the 
switches in the interconnect matrix. The array of blocks and 
interconnects figure a fabric of basic building blocks for logic 
design circuits. A typical Computer Aided Design (CAD) for an 

FPGA would include software for certain tasks like the behavioral 
design, functional simulation, verification, placing and routing. 
We used Xilinx ISE for simulation environment, and VHDL 
(VHSIC Hardware Description Language) also provides a 
consistent and portable design instrument pointing FPGAs. 

5.1 FPGA Logic Block Architecture 
The basic idea underlying the architecture of an FPGA is very 
simple. In general combinational and sequential circuits can be 
implemented directly in silicon. A generic FPGA consists of 
numerous programmable logic blocks which have the capability 
to implement some digital functions. Logic blocks comprise 
programmable routing switches which connect the input and 
output pins of each logic block. When a circuit is implemented in 
an FPGA, it is first decomposed into smaller sub-circuits that can 
each be mapped into a logic block. An illustration of a typical 
FPGA architecture is showed in Figure 5 [1]. The I/O pads are 
evenly distributed around the perimeter of the FPGA. 

 
 Figure 5. Structure diagram of FPGA 

 

The advantages of FPGA over a microprocessor chip for neural 
computing can be listed as [3]: 

Figure 4. Back-Propagation algorithm 
1. Developing hardware systems using design tools for FPGAs 

is as easy as developing a software system 

2. FPGAs can be re-programmed on the fly 

3. The new FPGAs on the market support hardware that 
requires more than 1 million gates (a small scale processor 
can be implemented using such an FPGA) 

4. A custom circuit built on an FPGA operates faster than a 
microprocessor chip 

These advantages make FPGAs now viable alternatives to other 
technology implementations for high-speed neural applications. 
The structure of a FPGA can be described as an array of blocks 
connected together via programmable interconnections. The 
amount of logic that each logic block can implement depends on 
which family of FPGAs is being used. The most important 
advantage of FPGAs is the flexibility that they provide. An 
engineer can change and refine his design by exploiting the 
device’s re-programmability [4]. 

5.2 FPGA Design Flow 
The design flow broadly refers to the sequence of activities 
encompassing various design tools that begin with some abstract 
specification of a design and ends with a configured FPGA. The 
design flow described in this section is that of the Xilinx ISE 



environment and is illustrated in Figure 6. However most of the 
activities will have a counterpart in any vendors’ design flow [6]. 
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The core generation utilities are divided in three categories: HDL 
editor, state machine editor, and schematic capture. Numbers of 
EDA tools provide these functionalities, such as Xilinx ISE, 
ModelSim, Synplify, and MaxplusII. In VHDL environment, 
behavioral design and synthesis are necessary and help us to 
check the correctness and logicality of the program. After 
functional simulation, we can start to do verification and placing 
and routing on the FPGA. Once the verification is completed, the 
program can be downloaded onto the FPGA.  

6. RESULT 
The complete circuit diagram shown in Figure 7 corresponds to 
our neuron-model. The implementation platform was Xilinx AFX 
BG560-100 Prototype Board comes with Xilinx Virtex XCV1000 
FPGA device. The board also includes XC1800 configuration 
PROMs in PC44 packages and can be reprogram via JTAG.  

Before synthesizing the circuitry, the simulation is carried out by 
the Xilinx ModelSim XE. Finally, the design was synthesized 
using Xilinx Project Navigator.  

7. CONCLUSION 
In this paper the neuron model is designed, simulated, and 
synthesized in Xilinx Vertex II, XCV1000 FPGA. This is 
achieved using Xilinx ISE software packages and AFX BG560-
100 Prototype Board that instrumented with download and upload 
utilities.  

 Figure 6. FPGA Design Flow 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Circuit diagram of the design 



Since the primary performance for this design is on-chip learning 
for general purpose, training is done completely on the chip 
without any other devices. Currently, we are working on using 
this chip in Adaptive Noise Cancellation for speech recognition 
applications. We used the neuron-model as a filter, and adjust the 
weights to minimize the error to get the optimized output. This 
work is under construction and hopefully more result can be 
brought to the conference.  
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