
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/228961300

An	FPGA-Based	General	Purpose	Neural	Network
Chip	With	On-Chip	Learning

ARTICLE	·	JANUARY	2005

READS

21

2	AUTHORS,	INCLUDING:

Yaser	Khalifa

ABB

34	PUBLICATIONS			106	CITATIONS			

SEE	PROFILE

Available	from:	Yaser	Khalifa

Retrieved	on:	24	November	2015

http://www.researchgate.net/publication/228961300_An_FPGA-Based_General_Purpose_Neural_Network_Chip_With_On-Chip_Learning?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/228961300_An_FPGA-Based_General_Purpose_Neural_Network_Chip_With_On-Chip_Learning?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Yaser_Khalifa2?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Yaser_Khalifa2?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/ABB?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Yaser_Khalifa2?enrichId=rgreq-5441c42b-f983-47eb-9cf4-7e6f3d431d30&enrichSource=Y292ZXJQYWdlOzIyODk2MTMwMDtBUzoxNDA2MTIyNTQ4MzQ2OTFAMTQxMDUzNTk4Mjk5MA%3D%3D&el=1_x_7

An FPGA-Based General Purpose Neural Network Chip
With On-Chip Learning

Yaser M.A. Khalifa

State University of New York at New Paltz
75 South Manheim Blvd.

(845) 257-3764

yaserma@engr.newpaltz.edu

Yu Jen Fan

State University of New York at New Paltz
75 South Manheim Blvd.

(845) 257-3746

fan00@newpaltz.edu

ABSTRACT
In this paper, a description of a general purpose neural network
chip with on-chip learning is given. The design is implemented
using Xilinx Vertex II XCV 1000 Field Programmable Gate
Array (FPGA). An XOR gate simulation was used as a testing
application. Results and comparison of both software and
hardware implementations are listed. A second testing application
in noise cancellation and voice recognition is currently under
development.

Keywords
Neural Networks, Field Programmable Gate Array, Hardware
Description Language.

1. INTRODUCTION
Neural networks can be implemented in software and hardware.
Since implementations on a conventional host computer are easier
and cheaper comparing to hardware, learning algorithms are
usually implemented in software for low-level applications. The
performance of a conventional processor, e.g. the Intel Pentium
series, continues to improve dramatically but they are still far
away from the required performance. Even the fastest sequential
processor can not provide real-time response for neural networks
with large number of neurons and synapses. Therefore speed
becomes the primary reason of using hardware implementations
for neural network. In this paper, we provided the result from
both software and hardware implementation.

2. OVERVIEW OF NEURAL HARDWARE
Implementation of Neural Networks can be more practical and
attractive when high-speed and cost-effective neural hardware is
available. There are some attributes to categorize these hardware
devices, depending on their purposes, architectures, and learning
types. The graph of taxonomy is shown in Figure 1.

General purpose designed neurochips can be developed by either
single processor or multiple processor systems, and require a huge
number of computations and communications resources to
perform a neural function. Most general purpose neurochips are
digital so that the processors would be able to execute larger
neural networks in a parallel environment. The advantages of
using general designed neuro-computers are ease to implement,
wide availability, and lower cost.

Dedicated purpose neural hardware design usually has a higher
performance because the direct mapping from hardware structure
to silicon is available. However, a direct mapping in the
interconnection also implies massive communication cost.
Therefore the dedicated design usually depends on the application
requirements and usually a custom-design. The drawback of this
design is the lack of flexibility.

Neural Network hardware also can be classified by its learning
type: on-chip, off-chip, and chip-in-the-loop learning. On-chip
learning provides the highest speed and precision. The training
algorithm and the weight updates are completely done on chip.
Off-chip learning is performed by a host computer. The weight
updates from the training process are quantized and then
downloaded on the chip. Obviously, off-chip learning can reduce
the silicon space, but it is much slower than on-chip learning.
Chip-in-the-loop learning uses the hardware for only forward
propagation. The calculations of the new weights are done by a
host computer, which means the updated weights will be
downloaded to the chip after a training cycle. In this paper we
describe an on-chip learning general purpose neural network chip
using Xilinx FPGA, which means we downloaded the program
into FPGA and performs without any other devices.

3. LEARNING AND TRAINING
This section introduces the concept of training a network to
perform a given task. In order for a TLU to perform a given
classification, it must have the desired decision surface. Since this
is done by the weight vector and threshold, it is necessary to
adjust these to bring about the required functionality. In general
terms, adjusting the weights and thresholds in a network is usually
done via an iterative process of repeated presentation of examples
of the required task. At each presentation, small changes are made
to weights and thresholds to make them more close to their
desired values. This process is known as training the net. From
the network’s viewpoint, it undergoes a process of learning, and
the prescription for how to change the weights at each step is the
learning rule (or the learning algorithm).

Figure 1. Taxonomy of neural hardware

There are two types of neural network (classified by structure),
one is feed-forward network and the other is feed-back network.
Both of these two networks can be expressed as a supervised
learning.

3.1 DELTA Rule
The unit perceptron is constructed by single layer network, collect
the input data to form an activation function, and classified the
output using threshold. To make the perceptron learning, we use
the “DELTA rule” to train nodes. The formula is given:

iii WtWtW ∆+=+)()1((1)

ii XW ** δα=∆ (2)

ii at −=δ (3)

Here, is the synaptic weight from input neuron to output

neuron, is the target output, is the actual output, and

iW

it ia α is
a positive factor of proportionality called learning rate. The rule
tells us that we get the new value of a weight by adding a certain,
weight-specific “delta”. In other words, the change of a weight
feeding into an output unit is the bigger the more the actual output
deviates from the target output. If the difference between actual
and target output is zero, no changes need to be made to this
weight. This rule works well for single-layer networks (i.e.
perceptron), but can not be applied to general feed-forward nets,
since there is no information concerning “targets” for hidden units,
so the delta rule does not tell us how to change the weights
feeding into these units. On the other hands, we can not limit
ourselves to networks without hidden units, since it has been
proved that they are necessary for some tasks, and that is why we
need feed-back network which represented by back-propagation
algorithm to change the weights in hidden layer.

3.2 Back-Propagation Algorithm
Back-propagation algorithm is the most important and popular
learning algorithm [5]. The algorithm works with a generalization
of the delta algorithm to multi-layer feed-forward networks, that
means in particular to networks with hidden units. The algorithm
is called back-propagation, and it is based in the mathematical
method of gradient descent. Rumelhart begins his original paper
by presenting a derivation of the delta rule that shows the delta
rule also implements gradient descent. The idea is to define an
error function:

∑ −=
i

ii atE 2)(
2
1 (4)

Where i varies over all output units and all input/output patterns.
This function is assumed to be a function of the weights, and the
ultimate goal is to minimize this function (i.e. minimize the error)
by adjusting the weights. There is no formula for the error
function, the only known pieces of information are the current
point in weight space and the current output, or its deviation from
the desired output, respectively. The optimal vector is then found
by minimizing this function by gradient descent as shown
schematically in figure 2.

 Figure 2. Gradient Descent for a Network

In this case there is an extra term in the delta rule that is the
derivative of the sigmoid daad /)(σ . It is convenient
occasionally to denote derivatives by a dash or prime symbol so
putting)('/)(adaad σσ = , we obtain:

iiii XataW *)(*)(' −=∆ ασ (5)

Where)(aσ is the activation function and)(' aσ is the slope
of the sigmoid function. They are showed in figure 3.

Figure 3. The sigmoid function and its slope

It is now possible to write the hidden node learning rule for the
th hidden unit as: k

ki
pk

kki XaW δασ)('=∆ where (6) ∑
∈

=
kIj

jk
jk Wδδ

Therefore, for any node k (hidden or output) we may write:

ki
pk

ki XW **δα=∆ (7)

For the output nodes:

))((' k
p

k
p

kk ata −= σδ (8)

For the hidden nodes:

∑
∈

=
kIj

jk
j

kk Wa δσδ)(' (9)

In line with convention, this is the usage that will be adopted
subsequently. It remains to develop a training algorithm around
the rules we have developed. In [2], it will be clearer to expand
the main step of back-propagation algorithm in following steps

1. Present the pattern at the input layer

2. Let the hidden units evaluate their output using the pattern.

3. Let the output units evaluate their output using the result in
step 2 from the hidden units.

4. Apply the target pattern to the output layer.

5. Calculate the δ’s on the output nodes.

6. Train each output node using gradient descent (7)

7. For each hidden node, calculate itsδaccording to (9)

8. For each hidden node, calculate itsδaccording to (6)

The steps 1-3 are collectively known as the forward pass since
information is following forward through the network in the
natural sense of the nodes’ input-output relation. Steps 4-8 are
collectively known as the backward pass. Step 7 involves
propagating the δs back from the output nodes to the hidden
units-hence the name back-propagation. The networks that get
trained like this are sometimes known as multilayer perceptron or
MLP. A simulation from Matlab is shown in Figure 4.

4. RESULT FROM SOFTWARE
C language is one of the most popular environments for designers.
In our project, we used Visual C++ to simulate the XOR gate
using back-propagation algorithm. The training process basically
checks the result for every possible model (“00”, “01”, “10”, and
“11”). The updated weights must be satisfied by all of these sets.
If a set of weights are qualified for part of sets such as “00” and
“01”, but fails to qualify the “10”, the process requires resetting
the counter and running through from “00” again until all the
weights are satisfied by these sets. The procedure takes a long
time to simulate while the error is limited to 5%.

5. Field Programmable Gate Array
A Field Programmable Gate Array (FPGA) is a completely
reconfigurable logic chip. This logic chip consists of millions of
configurable logic block (CLB) which can be linked together to
form complex digital logic implementations. The individual units
are interconnected by a matrix of wires and programmable
switches. A user’s design is implemented specifying the simple
logic function for each logic block and selectively closing the
switches in the interconnect matrix. The array of blocks and
interconnects figure a fabric of basic building blocks for logic
design circuits. A typical Computer Aided Design (CAD) for an

FPGA would include software for certain tasks like the behavioral
design, functional simulation, verification, placing and routing.
We used Xilinx ISE for simulation environment, and VHDL
(VHSIC Hardware Description Language) also provides a
consistent and portable design instrument pointing FPGAs.

5.1 FPGA Logic Block Architecture
The basic idea underlying the architecture of an FPGA is very
simple. In general combinational and sequential circuits can be
implemented directly in silicon. A generic FPGA consists of
numerous programmable logic blocks which have the capability
to implement some digital functions. Logic blocks comprise
programmable routing switches which connect the input and
output pins of each logic block. When a circuit is implemented in
an FPGA, it is first decomposed into smaller sub-circuits that can
each be mapped into a logic block. An illustration of a typical
FPGA architecture is showed in Figure 5 [1]. The I/O pads are
evenly distributed around the perimeter of the FPGA.

 Figure 5. Structure diagram of FPGA

The advantages of FPGA over a microprocessor chip for neural
computing can be listed as [3]:

Figure 4. Back-Propagation algorithm
1. Developing hardware systems using design tools for FPGAs

is as easy as developing a software system

2. FPGAs can be re-programmed on the fly

3. The new FPGAs on the market support hardware that
requires more than 1 million gates (a small scale processor
can be implemented using such an FPGA)

4. A custom circuit built on an FPGA operates faster than a
microprocessor chip

These advantages make FPGAs now viable alternatives to other
technology implementations for high-speed neural applications.
The structure of a FPGA can be described as an array of blocks
connected together via programmable interconnections. The
amount of logic that each logic block can implement depends on
which family of FPGAs is being used. The most important
advantage of FPGAs is the flexibility that they provide. An
engineer can change and refine his design by exploiting the
device’s re-programmability [4].

5.2 FPGA Design Flow
The design flow broadly refers to the sequence of activities
encompassing various design tools that begin with some abstract
specification of a design and ends with a configured FPGA. The
design flow described in this section is that of the Xilinx ISE

environment and is illustrated in Figure 6. However most of the
activities will have a counterpart in any vendors’ design flow [6].

Programming

Place and Route

Synthesis
Core

Generation
Utilitites

HDL
 Editor

State Machine
 Editor

Schematic
 Capture

Behavioral Simulation

Functional Simulation

Verification

Device Programming

Model Development

Test

The core generation utilities are divided in three categories: HDL
editor, state machine editor, and schematic capture. Numbers of
EDA tools provide these functionalities, such as Xilinx ISE,
ModelSim, Synplify, and MaxplusII. In VHDL environment,
behavioral design and synthesis are necessary and help us to
check the correctness and logicality of the program. After
functional simulation, we can start to do verification and placing
and routing on the FPGA. Once the verification is completed, the
program can be downloaded onto the FPGA.

6. RESULT
The complete circuit diagram shown in Figure 7 corresponds to
our neuron-model. The implementation platform was Xilinx AFX
BG560-100 Prototype Board comes with Xilinx Virtex XCV1000
FPGA device. The board also includes XC1800 configuration
PROMs in PC44 packages and can be reprogram via JTAG.

Before synthesizing the circuitry, the simulation is carried out by
the Xilinx ModelSim XE. Finally, the design was synthesized
using Xilinx Project Navigator.

7. CONCLUSION
In this paper the neuron model is designed, simulated, and
synthesized in Xilinx Vertex II, XCV1000 FPGA. This is
achieved using Xilinx ISE software packages and AFX BG560-
100 Prototype Board that instrumented with download and upload
utilities.

 Figure 6. FPGA Design Flow

Figure 7. Circuit diagram of the design

Since the primary performance for this design is on-chip learning
for general purpose, training is done completely on the chip
without any other devices. Currently, we are working on using
this chip in Adaptive Noise Cancellation for speech recognition
applications. We used the neuron-model as a filter, and adjust the
weights to minimize the error to get the optimized output. This
work is under construction and hopefully more result can be
brought to the conference.

8. REFERENCES
[1] Ahmed, E. and Rose, J. The Effect of LUT and Cluster Size

on Deep-Submicron FPGA Performance and Density. ACM
Symp. FPGAs, pp. 3-12, 2000.

[2] Gurney, K. An Introduction to Neural Networks, Press, 1997.
[3] McKenna, M. and Wilamowski, B. 2001. Implementing a

Fuzzy System on a Field Programmable Gate Array.
International Joint Conference on Neural Networks
(IJCNN’01), pp. 189-194, 2001.

[4] Özmen, A., Tekçe, F., and Vardar, K. Hardware
Implementation of a Neural-Model. Proceeding of
International Conference on Signal Processing, Vol. 1, No. 2,
2003.

[5] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
Learning Internal Representations by Error Propagation.
Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, vol. 1, Foundations, eds. D.E,
1986.

[6] Yalamanchili, S. Introductory VHDL: From Simulation To
Synthesis. Prentice Hall, 2001.

	INTRODUCTION
	OVERVIEW OF NEURAL HARDWARE
	LEARNING AND TRAINING
	DELTA Rule
	Back-Propagation Algorithm

	RESULT FROM SOFTWARE
	Field Programmable Gate Array
	FPGA Logic Block Architecture
	FPGA Design Flow

	RESULT
	CONCLUSION
	REFERENCES

